Received 20 December 2006

Accepted 20 December 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

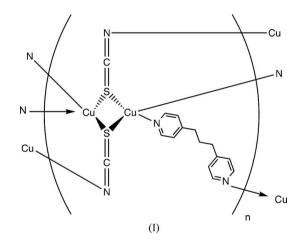
Ryan J. Trovitch,^a Randy S. Rarig,^b Jon A. Zubieta^b and Robert L. LaDuca^c*

^aDepartment of Chemistry and Physics, King's College, Wilkes-Barre, PA 18711, USA, ^bDepartment of Chemistry, Syracuse University, NY 13244, USA, and ^cLyman Briggs School of Science, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA

Correspondence e-mail: laduca@msu.edu

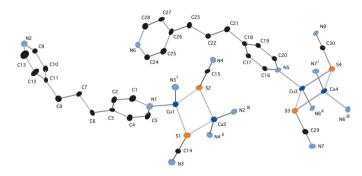
Key indicators

Single-crystal X-ray study T = 94 K Mean σ (C–C) = 0.008 Å R factor = 0.056 wR factor = 0.127 Data-to-parameter ratio = 21.2

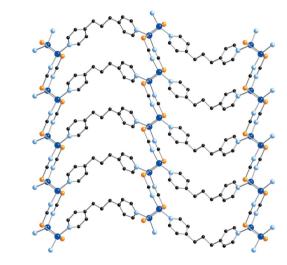

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A coordination polymer with conformationally distinct layers: poly[(μ -1,3-di-4-pyridylpropane- $\kappa^2 N:N'$)bis(μ_3 -thiocyanato- $\kappa^3 N,S:S$)dicopper(I)]

The title compound, $[Cu_2(SCN)_2(C_{13}H_{14}N_2)]_n$, is a twodimensional coordination polymer containing tetrahedrally coordinated Cu^I atoms bound to one N atom from a 1,3-di-4pyridylpropane molecule, and one N and two S atoms from three distinct μ_3 -thiocyanate anions. The resulting $[Cu_2(SCN)_2]$ staircase motifs align parallel to the *b* crystal axis and link through tethering 1,3-di-4-pyridylpropane ligands into layers parallel to the *bc* crystal plane. Distinct layers with subtly different conformations stack in a *BAA'B'* pattern, where the *BA* and *A'B'* double slabs are related by an inversion center.


Comment

A rich chemistry based on copper(I) thiocyanate coordination polymers has been revealed in recent years, with dipodal organodiimine donors being employed to engineer a wide variety of interesting structural motifs. For example, twodimensional [CuSCN] layers, strutted by 4,4'-bipyridine (4,4'byy) ligands, are observed in [Cu₂(SCN)₂(4,4'-bpy)]_n (Blake *et al.*, 1999). Using an ethylene-tethered dipyridyl ligand in this system results in the coordination polymer [Cu(SCN)(1,2-di-4pyridylethane)]_n which contains one-dimensional [CuSCN] single chains linked into a three-dimensional network with 4^26^38 topology (Wang, Guo *et al.*, 1999).


We report here the formation of the propylene analog to the above complexes, $[Cu_2(SCN)_2(1,3-di-4-pyridylpropane)]_n$, (I), which was prepared *via* hydrothermal techniques. The structure of (I) is based on $[CuS_2N_2]$ distorted coordination tetrahedra, where the two S donors and one N donor belong to three distinct thiocyanate anions. The fourth coordination site is occupied by an N atom of a 1,3-di-4-pyridylpropane (dpp) molecule. The coordination tetrahedra edge-share through

© 2007 International Union of Crystallography All rights reserved

Figure 1

Asymmetric unit of the title compound, with symmetry-equivalent N atoms to complete the Cu coordination, showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted. The symmetry codes are as in Table 1.

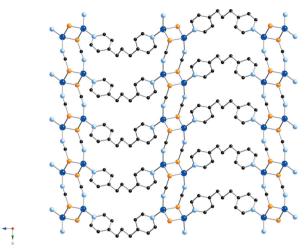


Figure 2

A single polymeric two-dimensional layer motif of type A within (I), which lies parallel to the bc crystal plane. H atoms have been omitted. Color codes: dark-blue Cu, light-blue N, orange S, black C.

two bridging thiocyanate S atoms to construct $[Cu_2S_2]$ rhomboids. Subtle conformational differences within the dpp molecules and $[Cu_2S_2]$ rhomboids exist in the two crystallographically distinct $[Cu_2(SCN)_2(dpp)]$ units (Fig. 1). The Cu1···Cu2 and Cu3···Cu4 through-space distances are 2.8441 (11) and 2.8390 (13) Å, respectively, falling in the usual range for non-bonding Cu^I···Cu^I cuprophilic interactions (Sundaraman, Zakharov *et al.*, 2005).

The $[Cu_2S_2]$ rhomboids connect to two neighboring $[Cu_2S_2]$ rhomboids in the *b*-axis direction through the N donor atoms of bridging thiocyanate ligands to form $[Cu_2(SCN)_2]$ staircases. Neighboring staircases are conjoined *via* tethering dpp ligands to form layers parallel to the *bc* crystal plane. The use of the propylene tether in (I) appears to promote formation of a staircase/tethered layer structure similar to that reported for $[Cu_2(SCN)_2(trans-1,2-di-(4-pyridyl)ethylene)]$ (Blake *et al.*, 1999). Owing to the dpp conformational differences, two subtly different layers are observed in (I). Layer *A*, formed from Cu1, Cu2 and connected atoms, is shown in Fig. 2. The other half of the asymmetric unit constructs layer *B*, shown in

Figure 3

A single polymeric two-dimensional layer motif of type B within (I), which lies parallel to the bc crystal plane. H atoms have been omitted for clarity. Color codes are as in Fig. 2.

Fig. 3. The $[Cu_2(SCN)_2]$ staircases in layer A are twisted by $\sim 60^\circ$ relative to those in layer B. Layers B and A form BA double slabs *via* crystal packing forces. These are related through crystallographic inversion centers to afford a BAA'B' stacking pattern (Fig. 4), thus building the three-dimensional structure of (I).

Experimental

All chemicals were obtained commercially. A mixture of copper(I) thiocyanate (40 mg, 0.33 mmol), 1,3-di-4-pyridylpropane (131 mg, 0.66 mmol), aqueous hydrochloric acid (0.4 ml, 1.0 M, 0.4 mmol) and water (6.0 g, 330 mmol) was flame-sealed into a borosilicate glass tube, which was then heated under autogenous pressure at 393 K for 42 h. Yellow blocks of the title compound were manually separated from a flocculent brown precipitate.

Crystal data

$[Cu_2(SCN)_2(C_{13}H_{14}N_2)]$	Z = 4
$M_r = 883.00$	$D_x = 1.734 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 23.296 (5) Å	$\mu = 2.76 \text{ mm}^{-1}$
b = 5.7045 (11)Å	T = 94 (2) K
c = 30.675 (6) Å	Block, yellow
$\beta = 123.95 \ (3)^{\circ}$	$0.30 \times 0.24 \times 0.20 \text{ mm}$
$V = 3381.4 (17) \text{ Å}^3$	

Data collection

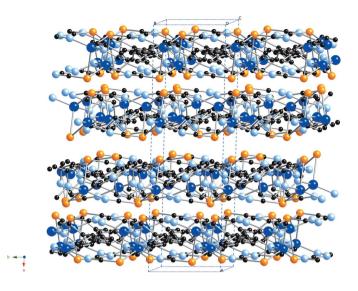
Bruker P4 area-detector21991 measudiffractometer8273 indepe ω scans4812 reflectiAbsorption correction: multi-scan $R_{int} = 0.089$ (SADABS; Sheldrick, 1996) $\theta_{max} = 28.3^{\circ}$ $T_{min} = 0.465, T_{max} = 0.575$ $\theta_{max} = 28.3^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.127$ S = 1.008273 reflections 391 parameters 21991 measured reflections 8273 independent reflections 4812 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.089$ $\theta_{\text{max}} = 28.3^{\circ}$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0481P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.70 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.66 \text{ e} \text{ Å}^{-3}$

Table 1	
Selected geometric parameters (Å, °).	


	1.0(1.(5)		1.052 (5)
$Cu1 - N3^{1}$	1.961 (5)	Cu3–N8 ⁱⁱ	1.952(5)
Cu1-N1	2.008 (4)	Cu3-N5	2.008 (4)
Cu1-S1	2.3272 (17)	Cu3-S4	2.4080 (16)
Cu1-S2	2.4142 (18)	Cu3-S3	2.543 (2)
Cu2-N4 ⁱⁱ	1.911 (5)	Cu4–N7 ⁱ	1.931 (4)
Cu2-N2 ⁱⁱⁱ	1.977 (4)	Cu4–N6 ⁱⁱⁱ	1.999 (4)
Cu2-S2	2.4329 (16)	Cu4-S3	2.3844 (16)
Cu2-S1	2.5630 (18)	Cu4-S4	2.513 (2)
	11(25 (10)		124.07 (10)
$N3^{1}$ -Cu1-N1	116.35 (19)	$N8^{n}$ – Cu3 – N5	134.07 (18)
N3 ⁱ -Cu1-S1	104.63 (14)	$N8^{ii}$ -Cu3-S4	101.20 (13)
N1-Cu1-S1	112.68 (14)	N5-Cu3-S4	109.15 (13)
N3 ⁱ -Cu1-S2	103.68 (14)	N8 ⁱⁱ -Cu3-S3	100.54 (14)
N1-Cu1-S2	106.55 (15)	N5-Cu3-S3	101.28 (14)
S1-Cu1-S2	112.77 (6)	S4-Cu3-S3	108.75 (5)
$N4^{ii}$ -Cu2-N2 ⁱⁱⁱ	144.51 (19)	$N7^{i}$ -Cu4-N6 ⁱⁱⁱ	130.64 (18)
N4 ⁱⁱ -Cu2-S2	98.93 (14)	N7 ⁱ -Cu4-S3	105.26 (14)
N2 ⁱⁱⁱ -Cu2-S2	104.87 (14)	N6 ⁱⁱⁱ -Cu4-S3	107.87 (13)
N4 ⁱⁱ -Cu2-S1	98.99 (14)	N7 ⁱ -Cu4-S4	101.04 (14)
N2 ⁱⁱⁱ -Cu2-S1	100.10 (15)	N6 ⁱⁱⁱ -Cu4-S4	100.37 (14)
S2-Cu2-S1	104.42 (6)	S3-Cu4-S4	110.53 (5)
C3-C6-C7-C8	175.6 (5)	C18-C21-C22-C23	-160.9(5)
C6-C7-C8-C11	175.6 (5)	C18 = C21 = C22 = C23 C21 = C22 = C23 = C26	-170.9(3) -179.1(5)
0-0-0-01	177.2 (3)	$C_{21} - C_{22} - C_{23} - C_{26}$	-1/9.1 (3)

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

All H atoms were placed in calculated positions, with C–H = 0.93 and 0.97 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *CrystalMaker* (*CrystalMaker*, 2005); software used to prepare material for publication: *SHELXS97*.

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund (Type B grant for undergraduate research) and Michigan State University for funding this work. The Bruker P4 CCD diffractometer at Syracuse University was purchased with a grant from the National Science Foundation.

Figure 4

Packing diagram illustrating the stacking of layers in an BAA'B' pattern to form the three-dimensional crystal structure of (I).

References

- Blake, A. J., Brooks, N. R., Champness, N. R., Crew, M., Hanton, L. R., Hubberstey, P., Parsons, S. & Schroder, M. J. (1999). J. Chem. Soc. Dalton Trans. pp. 2813–2817.
- Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT-Plus. Version 6.25. Bruker AXS Inc., Madison, Wisconsin, USA.
- CrystalMaker (2005). *CrystalMaker*. Version 7.1. Crystal Maker Software, PO Box 183, Bicester, Oxfordshire, England.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sundaraman, A., Zakharov, L. N., Rheingold, A. L. & Jakle, F. (2005). Chem. Commun. pp. 1708–1710.
- Wang, Q.-M., Guo, G.-C. & Mak, T. C. W. (1999). Chem. Commun. pp. 1849– 1850.